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Abstract. This paper studies the regularization of constrained Maximum Likelihood

iterative algorithms applied to incompatible ill-posed linear inverse problems.

Specifically we introduce a novel stopping rule which defines a regularization algorithm

for the Iterative Space Reconstruction Algorithm in the case of Least-Squares

minimization. Further we show that the same rule regularizes the Expectation

Maximization algorithm in the case of Kullback-Leibler minimization provided a well-

justified modification of the definition of Tikhonov regularization is introduced. The

performances of this stopping rule are illustrated in the case of an image reconstruction

problem in X-ray solar astronomy.
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1. Introduction

In the theory of linear ill-posed inverse problems, discrepancy is a measure of the

effectiveness of an element in the solution space to reproduce a given element in the

data space through the linear operator modeling the problem. Examples of discrepancy

functions that are systematically utilized in this setting are the Least-Squares (LS)

discrepancy [23] and the Kullback-Leibler (KL) divergence [19]. The optimization

problem associated to the linear inverse problem is the one to minimize the discrepancy

function over the entire solution space or, more properly, over a subset of such space.

If this subset is the nonnegative orthant, the application of the Karush-Kuhn-Tucker

(KKT) conditions [8] transforms the constrained optimization problem into a fixed

point problem which can be naturally solved by means of a successive approximation

scheme. In the case of LS discrepancy this iterative scheme is the Iterative Space

Reconstruction Algorithm (ISRA) [9] while in the case of the KL discrepancy is

Expectation-Maximization (EM) [26]. Although both schemes have the convergence

property, their limit solutions are not acceptable from a physical viewpoint, since

the intrinsic ill-posedness of the original inverse problem induces noise amplification.

There are two ways to regularize this numerical instability: first, with an addition

of information on the solution realized by adding a penalty term to the discrepancy;

second, with the application of a stopping rule on the iterative approximation process

preventing the algorithm to reach the limit solution [12].

This paper focuses on this second approach to regularization, with specific

attention to the case of incompatible problems formulated in a finite dimension setting.

Incompatibility indicates that the noise-free version of the data does not belong to the

range of the operator and in this case the inverse problem is also called genuinely ill-

posed [28]. We note that a standard approach to stop iterative optimization algorithms

is to check the discrepancy value while the iterations run and stop the scheme when a

given threshold value is achieved [22, 6]. Our first results show that, for incompatible ill-

posed inverse problems, this approach is not regularizing for ISRA and EM. On the other

hand, we introduce a new stopping rule, named the KKT principle since it is inspired

by the KKT conditions, that is regularizing for ISRA even in the incompatible case.

However, we also observe that this same stopping rule fails to regularize EM. Therefore,

as the last result of our paper, we introduce a new definition of regularization algorithm

that naturally extends the classical Tikhonov definition [28, 12] to the asymptotic case

of data with large norm and show that, with such definition, the KKT principle is

regularizing for EM.

The plan of the paper is as follows. In Section 2 we setup the optimization problems

and introduce the iterative schemes for their solution. Section 3 discusses some existing

stopping rules in the case of incompatible problems and introduce a new stopping rule

based on the KKT conditions, showing its effectiveness for the regularization of the

LS problem. Section 4 provides a new definition of regularization algorithm and shows

that, under this definition, the KKT principle regularizes the solution of incompatible
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problems in the case of KL optimization. Section 5 shows how the KKT stopping rule

works when applied to an image reconstruction problem in hard X-ray solar astronomy.

Our conclusions will be offered in Section 6.

As a final remark, we observe that most of the arguments treated in this paper

has a straightforward statistical interpretation. For example, the optimization of the

LS and KL discrepancies can be interpreted as Maximum Likelihood (ML) problems

for Gaussian and Poisson statistics, respectively; ISRA and EM provides constrained

solutions for these maximum-likelihood problems; and also the new KKT stopping rule

can be interpreted in a statistical way. Therefore, although all results in the paper are

obtained in a deterministic optimization framework, when appropriate we will point out

the statistical aspects of the methods introduced.

2. Optimization problems and iterative schemes

Let us consider two normed vector spaces X and Y of dimension M and N , respectively.

Let H be an N ×M matrix representing a linear application X → Y whose elements

are nonnegative, i.e. for all j = 1, . . . ,M and i = 1, . . . , N

Hij ≥ 0 (1)

and no rows are identically zero, i.e. for all i = 1, . . . , N

M
∑

j=1

Hij > 0 . (2)

Let x = (x1, . . . , xM) be the vector belonging to the nonnegative convex and closed cone

CX = {x ∈ X | xj ≥ 0 , j = 1, . . . ,M} and let Hx the corresponding vector belonging

to H(CX ) ⊂ CY , where CY = {y ∈ Y | yi ≥ 0 , i = 1, . . . , N}. We consider x as a set of

unknown parameters to be estimated, knowing an element y = (y1, . . . , yN) ∈ Y which

represents the detected signal. The estimation problem is to find x such that

y = Hx , x ∈ CX . (3)

In particular we are interested in the case when the exact solution of equation (3) is

nonexistent and the problem is called incompatible, i.e. y 6∈ H(CX ) [28]. In this case,

an estimation of x can be found using the following procedure. Given some discrepancy

L : X × Y → R
+ ∪ {0} (4)

which assigns to each pair (x, y) a nonnegative number, we can consider the problem

of finding the elements x∗ at which the discrepancy takes its minimum within CX , i.e.

such that

L(x∗, y) = min
x∈CX

L(x, y) =: µL(y) > 0 , (5)

with data y. At least one minimizer x∗ ∈ CX exists if L is convex and coercive on

CX . The map µL : Y → R
+ is called the incompatibility measure of the problem (3)

according to the discrepancy L.
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In this work we will consider two discrepancies: the LS function

DLS(x, y) = ‖Hx− y‖22 , (6)

and the KL divergence

DKL(x, y) =
N
∑

i=1

yi log
yi

(Hx)i
+ (Hx)i − yi , (7)

where multiplication and division between vectors are done elements by elements.

Common algorithms for the constrained minimization (5) of discrepancies (6) and (7)

are gradient-type algorithms. In this work we will focus on multiplicative algorithms

that can be readily derived from the KKT conditions of the corresponding minimization

problems [8]. In the case of nonnegative constraint, i.e. x ∈ CX , the KKT conditions

take the form

x ∇xL(x, y) = 0 , x ∈ CX (8)

where multiplication and equality between vectors are done element-by-element. In both

cases one can transform condition (8) into a fixed point equation and then, applying a

successive approximation scheme, one gets a multiplicative iterative algorithm. When

L is the LS function (6), equation (8) leads to

x(k+1) = x(k)
HTy

HTHx(k)
(9)

which, initialized with a constant vector x(0) = ξ ∈ CX provides positive estimates of the

solution when HTy has positive elements and is known as ISRA. It has been introduced

as an acceleration of EM [9] and it is convergent to the constrained minimum of DLS

[10]. On the other hand, when L is the KL divergence (7), equation (8) leads to

x(k+1) =
x(k)

HT1Y
HT y

Hx(k)
(10)

where 1Y indicates the constant vector (1, . . . , 1) ∈ Y . The algorithm (10) is usually

initialized with a constant vector x(0) = ξ ∈ CX , it is known as EM [11] or also as

Richardson Lucy algorithm [25, 21] when H represents a convolution operator and it is

convergent to the constrained minimum of DKL [26] when y ∈ CY .

3. Stopping rules for incompatible problems

For any fixed y ∈ Y let us consider the iterative algorithms (9) and (10). Let us indicate

with φ
(k)
y : X → X , where k ∈ N, the map representing their iterative step, i.e.

x(k+1) = φ(k+1)
y (x(k)) . (11)

For every ξ ∈ CX , let us consider the family of operators ψξ : N×Y → CX defined by

ψ
(k)
ξ (y) = φ(k)

y ◦ . . . ◦ φ(1)
y (ξ) (12)
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which determines a map Y → CX for every k. The convergence property is valid for both

algorithms [10, 26] and prescribes that, given a datum y ∈ Ω the convergence domain

and an initializing vector ξ ∈ CX , there exists a unique element x̂ ∈ CX such that

lim
k→∞

‖ψ(k)
ξ (y)− x̂‖X = 0 . (13)

For any fixed initialization ξ ∈ CX we can define the inverse operator

Ψξ : Ω ⊂ Y → CX (14)

such that Ψξ(y) = x̂. In [2] authors observe that a nonnegative LS solution x̂ consists

of a set of few significantly nonnegative elements over a major part of zero values. In

[4] authors show this property with an example in a deconvolution framework, and note

that the non zero components of x̂ strongly depend on the noise realization corrupting

the data. In general, although x̂ is nonnegative, it is not acceptable from a physical

viewpoint, since it is corrupted by noise amplification. Therefore some regularization

of the operator Ψξ is required. It is well known that both algorithms (9) and (10)

have the semi-convergence property [5, 12], which means that until a certain number of

iterations the algorithms approach the solution of (5) and after that the reconstructions

deteriorate. As a result, these methods can be regularized by applying some stopping

rule. Now, to investigate the regularization properties of these algorithms, we utilize

the definition given in [27] for the regularization of inverse operators and apply it to

the case of iterative algorithms in finite dimensional normed spaces. In particular this

definition is given for a countable family of regularizing operators and it is specifically

referred to the operators Ψξ defined in equation (14).

Definition 3.1. The operator Ψξ : Ω ⊂ Y → X between two finite dimensional normed

vector spaces Y and X is called regularizable on Ω ⊂ Y if there exists a family of operator

Rk : Ω → X (15)

with k ∈ N and a parameter choice rule

k : R+ × Ω → N (16)

such that, for all y ∈ Ω,

lim
δ→0+

sup{‖Rk(δ,yδ)(y
δ)−Ψξ(y)‖ | yδ ∈ Ω , ‖yδ − y‖ ≤ δ} = 0 (17)

holds. For a specific y ∈ Ω, a pair ({Rk}, k) is called a regularization method for

Ψξ if (17) holds.

Clearly, the family of operators {ψ(k)
ξ }k∈N defined by equation (12), when provided

with a rule k(δ, yδ) such that

lim
δ→0+

inf{k(δ, yδ) | yδ ∈ Ω , ‖yδ − y‖ ≤ δ} = ∞ (18)

holds, satisfies condition (17). Since condition (18) can be readily fulfilled using, for

example, the parameter choice rule k(δ, yδ) = ⌊1/δ⌋, where the symbol ⌊·⌋ indicates the
integer part function, such a pair ({ψ(k)

ξ }k∈N, ⌊1/δ⌋) defines a regularization method. In
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general, a family of regularizing operators can be constructed starting from a convergent

iterative algorithm by using a stopping rule satisfying condition (18).

We are interested in parameter choice rules for iterative algorithms related with the

specific problem and hence depending on the data yδ. To this aim we now introduce a

general definition of stopping rule for iterative algorithms.

Definition 3.2. Fixed τ > 0, let fτ : N× R
+ × Ω → R a function. We call stopping

rule of an iterative algorithm the parameter choice rule k : R+ × Ω → N defined by

k(δ, yδ) := inf{k ∈ N | fτ (k, δ, yδ) ≤ 0} (19)

for any pair (δ, yδ).

This definition implies that for any fixed τ > 0 a stopping rule relates the number

of iterations k with the pair (δ, yδ). Further, different stopping rules are obtained by

selecting different choices for the function fτ . The stopping rules we will consider in this

paper are based on continuous fτ but this restriction is not mandatory for Definition

3.2.

To stop the ISRA iterations, we now introduce the Morozov discrepancy parameter

choice rule.

Definition 3.3. Let DLS be the LS discrepancy (6) and {ψ(k)
ξ } the family of operators

associated with ISRA. We call Morozov discrepancy stopping rule the function kM of the

form (19) with

fτ (k, δ, y
δ) := DLS(ψ

(k)
ξ (yδ), yδ)− τNδ2 . (20)

Now we prove that ISRA provided with the Morozov discrepancy principle is not

a regularizing algorithm if the problem (3) is incompatible.

Theorem 3.1. Let us consider the problem (3). Given y ∈ Ω, let DLS be the discrepancy

(6) and µLS(y) > 0 the corresponding incompatibility measure. For a given ξ ∈ CX , let

Ψξ(y) the limit solution of ISRA and {ψ(k)
ξ }k∈N the family of operators associated with

ISRA. For any fixed τ > 0, if δ <
√

µLS/τN then the Morozov stopping rule kM is not

defined in a neighborhood of (0, y).

Proof. Given an ǫ > 0, one can always find a δ such that µm := inf{µLS(y
δ) | ‖yδ−y‖ <

δ} > µLS(y)− ǫ, since the function µLS is continuous. Hence

µLS(y)− ǫ < µm ≤ DLS(ψ
(k)
ξ (yδ), yδ) ≤ τNδ2 . (21)

By taking δ such that τNδ2 < µLS(y), equation (21) is never satisfied and the function

kM is not defined in a neighborhood of (0, y) as ǫ can be arbitrarily chosen.

In the case of EM, some authors [24] proposed parameter choice rules depending on

the data error size and provided theoretical justifications for regularization. Recently,

approaches independent from the data error size have been studied in [6, 7, 17, 18]. In

[6] authors proposed and motivated with statistical arguments the Poisson discrepancy

parameter choice rule in order to estimate the regularization parameter both for
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optimization problems regularized with a penalty term and for stopping the unpenalized

algorithm. We recall this rule in our notation.

Definition 3.4. Let DKL be the KL divergence (7) and {ψ(k)
ξ } the family of operators

associated with EM. We call the Poisson discrepancy stopping rule the function kP of

the form (19) with

fτ (k, δ, y
δ) := DKL(ψ

(k)
ξ (yδ), yδ)− τ

N

2
(22)

Clearly, the stopping rule (22) does not depend on δ. However, with a little abuse of

notation, we used the symbol fτ = fτ (k, δ, y
δ) to indicate it. According to the assertion

at page 3 in [27] and to the meaning of Theroem 3.3 in [12], we now prove that the

rule (22) is not regularizing in general (i.e. not for any τ). Moreover, we prove that

this rule becomes regularizing if and only if an appropriate additional condition on τ is

given (see [12] page 157).

Theorem 3.2. Let us consider the problem (3). Given y ∈ Ω, let DKL be the discrepancy

(7) and µKL(y) > 0 the incompatibility measure. For a given ξ ∈ CX , let Ψξ(y) the

limit solution of EM, {ψ(k)
ξ }k∈N the family of operators associated with EM and kP the

Poisson stopping rule. The pair ({ψ(k)
ξ }, kP ) defines a regularization method if and only

if τ = 2µKL(y)/N .

Proof. Since EM is convergent, condition (17) is fulfilled if (18) holds true. We prove

that statement (18) of Definition (3.1) when k = kP as defined by equations (22) and

(19), holds true if and only if τ = 2µKL(y)/N .

Given an ǫ > 0, one can always find a δ such that µm := inf{µKL(y
δ) | ‖yδ − y‖ <

δ} > µKL(y) − ǫ, since the function µKL is continuous. Hence the set in r.h.s. of kP
definition (19) is described by

µKL(y)− ǫ < µm ≤ DKL(ψ
(k)
ξ (yδ), yδ) ≤ τN/2 . (23)

By taking τ < 2(µKL(y)−ǫ)/N condition 23 is never satisfied and, as ǫ can be arbitrarily

chosen, the function kP is not defined in a neighborhood of (0, y) when τ < 2µKL(y)/N .

Now we prove that the function kP is defined in a neighborhood of (0, y) when

τ ≥ 2µKL(y)/N . Being µKL(cy) = cµKL(y) for any c ∈ R
+, for any δ > 0 there

exists some yδ with ‖yδ − y‖ < δ such that µKL(y
δ) < µKL(y). For such a yδ, when

τ ≥ 2µKL(y)/N , as the EM iteration sequence ψ
(k)
ξ (yδ) converges to some x̂δ and

DKL(x̂
δ, yδ) = µKL(y

δ), we have that DKL(ψ
(k)
ξ (yδ), yδ) < µKL(y) ≤ τN/2 when k

is large enough. This implies that the function kP is defined at least on the non-empty

set ∆ = {(δ, yδ) | ‖yδ − y‖ < δ , µKL(y
δ) < µKL(y)}.

Moreover, when τ > 2µKL(y)/N , there exists a δ such that ∀(δ, yδ) ∈ ∆ the equation

DKL(ψ
(k)
ξ (yδ), yδ) ≤ τN/2 (24)

is satisfied for some finite value k since the l.h.s. is positive, limited and asymptotically

decreasing to µKL(y
δ) < τN/2 for any yδ as k tends to infinity. Hence the limit (18) is

finite.
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Finally, when τ = 2µKL(y)/N the stopping condition becomes DKL(ψ
(k)
ξ (yδ), yδ) ≤

µKL(y) and, being EM convergent, the limit (18) is ∞.

From Theorem 3.2 it follows that for incompatible problem (3) it is not ensured that

the Poisson discrepancy stopping rule defines a regularization method for the operator

Ψξ associated with EM. In fact, for a given data y and matrix H , the fulfillment of

the regularizing property depends on the value of the incompatibility measure µKL(y),

where the value y is unknown.

Now we introduce a stopping rule for ISRA and we will prove that it always applies

even to the case of incompatible LS problems.

Definition 3.5. Let us consider the following functions LLS(x, y) = ‖x HT (Hx− y) ‖22
and ELS(x, δ) = δ2

∑M

j=1 x
2
j (HT

2 1Y)j, where (H2)ij = (Hij)
2. The LS-KKT stopping

rule is defined by taking

fτ (k, δ, y
δ) := LLS(ψ

(k)
ξ (yδ), yδ)− τELS(ψ

(k)
ξ (yδ), δ) (25)

in equation (19).

Now we prove that ISRA provided with such a stopping rule is a regularization

operator for Ψξ(y) even for incompatible problems.

Theorem 3.3. Let us consider the problem (3) and let DLS be the discrepancy (6). For

any y ∈ Ω and for a given ξ ∈ CX , let Ψξ(y) the limit solution of ISRA and {ψ(k)
ξ }k∈N

the family of operators associated with ISRA. If kLS is the LS-KKT stopping rule, then

the pair ({ψ(k)
ξ }k∈N, kLS) is a regularization method for Ψξ(y) for any y ∈ Ω ⊂ Y.

Proof. Since ISRA is convergent, condition (17) is fulfilled if (18) holds true. We have to

prove statement (18) of Definition (3.1) when k = kLS, as defined in equations (25) and

(19). Since ψ
(k)
ξ (yδ) converges to some x̂δ and the set {x ∈ CX | LLS(x, y

δ) ≤ τELS(x, δ)}
is a neighborhood of x̂δ, the set {k ∈ N | LLS(ψ

(k)
ξ (yδ), yδ) ≤ τELS(ψ

(k)
ξ (yδ), δ)} is not

empty.

Now, we get a lower bound of the set in equation (18) weakening the condition

LLS(ψ
(k)
ξ (yδ), yδ)

E∗
LS(ψ

(k)
ξ (yδ))

≤ τδ2 (26)

where E∗
LS(ψ

(k)
ξ (yδ)) = ELS(ψ

(k)
ξ (yδ), δ)/δ2 is positive and bounded for all yδ such that

‖yδ − y‖ ≤ δ. By taking the infimum

s(k) := inf
‖yδ−y‖≤δ

LLS(ψ
(k)
ξ (yδ), yδ)

E∗
LS(ψ

(k)
ξ (yδ))

, (27)

we get a map s : N → R defined for every k ∈ N, which is positive, bounded and

asymptotically decreasing to 0, since the algorithm is convergent for every y ∈ Ω.

Hence, we obtain the following lower bound

inf{kLS(δ, yδ) | ∀ yδ, ‖yδ − y‖ ≤ δ} ≥ inf{k ∈ N | s(k) ≤ τδ2} (28)
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As δ tends to 0, k has to arbitrarily increase to fulfill condition s(k) ≤ τδ2 and therefore

the thesis is proved.

Remark 3.1. The LS-KKT stopping rule can be explained in a statistical framework

when the data Y is a Gaussian random vector with mean Hx and i.i.d. components each

one with variance σ2, and the minimizing function is the LS discrepancy. The function

LLS in Definition 3.5 is the square of the 2-norm of the l.h.s. of KKT conditions (8),

and ELS is its expected value. Indeed, it is easy to show that ELS(x, σ) = EY (LLS(x, y)).

Therefore, the parameter choice rule (25) stops ISRA iterations as soon as LLS becomes

equal to its expected value ELS, up to a scaling parameter τ > 0, i.e.

LLS(x, y) ≤ τELS (x, σ) . (29)

fτ in equation (25) is given by replacing (x, y) with (ψ
(k)
ξ (yδ), yδ) and the standard

deviation σ with the error level δ in equation (29).

We observe now that applying the statistical arguments in Remark 3.1 to the case

of a Poisson data vector Y with mean Hx and using the KL divergence as a discrepancy

function leads to the KL-KKT stopping rule for EM algorithm defined in the following:

Definition 3.6. Let us consider the following functions LKL(x, y) = ‖x
(

HT
(

1− y

Hx

))

‖22
and EKL(x) =

∑M

j=1 x
2
j

(

HT
2

1
Hx

)

j
. The KL-KKT stopping rule is defined by taking

fτ (k, δ, y
δ) := LKL(ψ

(k)
ξ (yδ), yδ)− τEKL(ψ

(k)
ξ (yδ)) (30)

in equation (19).

However we now prove that EM with the proposed stopping rule does not define a

regularization algorithm in the sense of definition (17).

Theorem 3.4. Let us consider the problem (3) and let DKL be the discrepancy (7). For

any y ∈ Ω and for a given ξ ∈ CX , let Ψξ(y) the limit solution of EM and {ψ(k)
ξ }k∈N the

family of operators associated with EM. If kKL is the KL-KKT stopping rule, then the

pair ({ψ(k)
ξ }k∈N, kKL) is not a regularization method for Ψξ(y) for any y ∈ Ω ⊂ Y.

Proof. Since EM is convergent, condition (17) is fulfilled if (18) holds true. We

prove that the statement (18) of definition (3.1) when k = kKL, as defined in

equations (25) and (19), does not hold true. Since ψ
(k)
ξ (yδ) converges to some x̂δ

and the set {x ∈ CX | LKL(x, y
δ) ≤ τEKL(x)} is a neighborhood of x̂δ, the set

{k ∈ N | LKL(ψ
(k)
ξ (yδ), yδ) ≤ τEKL(ψ

(k)
ξ (yδ))} is not empty. Now, we consider the

condition

LKL(ψ
(k)
ξ (yδ), yδ)

EKL(ψ
(k)
ξ (yδ))

≤ τ (31)

where ELS(ψ
(k)
ξ (yδ)) is positive and bounded for all yδ such that ‖yδ − y‖ ≤ δ. For any

yδ the l.h.s. is positive, bounded and asymptotically decreasing to 0 since the algorithm

is convergent. It means that, fixed τ > 0, exists a value k∗ such that

LKL(ψ
(k∗)
ξ (yδ), yδ)

ELS(ψ
(k∗)
ξ (yδ))

< τ ∀ yδ , ‖yδ − y‖ ≤ δ , (32)
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and hence the limit (18) is finite.

The reason why the KL-KKT criterion is not regularizing for EM is due to the

fact that such criterion does not depend on the error level δ2. The regularization

property of the KL-KKT stopping rule is re-established by introducing a new definition

of regularization algorithm involving the asymptotic behavior of operators Rk with

respect to the norm of y.

4. Asymptotic regularization

We remark that the definition of regularization is referred to a specific y ∈ Ω ⊂ Y and

therefore it concerns pointwise convergence of the family {Rk}k∈N to the operator Ψǫ.

In the following definition we introduce a new concept of regularization which concerns

the convergence of the family {Rk}k∈N when ‖y‖ → +∞ and we refer to it as asymptotic

regularization.

Definition 4.1. The operator Ψξ : Ω ⊂ Y → X between finite dimensional normed

vector spaces Y and X is called asymptotically regularizable on a cone C ⊂ Ω if there

exists a family of operator

Rk : C → X (33)

with k ∈ N and a parameter choice rule

k : R+ × C → N (34)

which satisfies the following condition: ∀ǫ > 0 and ∀δ > 0 exists an M0 such that

y ∈ C, yδ ∈ Ω, ‖y‖ > M0, ‖yδ − y‖ ≤ δ ⇒ ‖Rk(δ,yδ)y
δ −Ψξ(y)‖ < ǫ (35)

holds. A pair ({Rk}, k) is called an asymptotic regularization method for Ψξ on C
if (35) holds.

We note that any family of operators defined by equation (12) and associated to

some convergent algorithm satisfies condition (35) if it is provided with a rule k(δ, yδ)

satisfying the following condition: ∀N0 > 0 and ∀δ > 0 exists an M0 such that

y ∈ C, yδ ∈ Ω, ‖y‖ > M0, ‖yδ − y‖ ≤ δ ⇒ k(δ, yδ) > N0 . (36)

This condition means that, whatever the distance between the realization of the

data yδ and their exact version y, as the data norm increases, the number of iterations

needed to stop the algorithm has to increase. The underlying idea is that a Poisson

variable does not admit a noise-free realization unless asymptotically, i.e. when the

signal-to-noise ratio tends to infinity and this fact can be mimicked in an analysis

framework, by letting the norm of y tend to infinity.

Now, we will prove that EM with the Poisson discrepancy stopping rules does not

define an asymptotic regularization method for Ψξ when applied to the incompatible

problem (3), while it is if y ∈ H(CX ). To this aim we need the following general EM

property.
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Lemma 4.1. EM scaling property Given y ∈ Y and ξ ∈ CX , let us consider a scalar

S > 0 . Let ψ
(k)
ξ (y) indicate the k-th EM iteration with entry data y as in equation (10).

The following relation holds true for every k ∈ N

ψ
(k)
ξ (Sy) = Sψ

(k)
ξ (y) . (37)

Proof. At the first iteration, with entry data Sy, we have

ψ
(1)
ξ (Sy) =

ξ

HT1Y
HT Sy

Hξ
= Sψ

(1)
ξ (y) . (38)

For induction, by supposing that (37) holds true for k, we have

ψ
(k+1)
ξ (Sy) =

ψ
(k)
ξ (Sy)

HT1Y
HT Sy

Hψ
(k)
ξ (Sy)

= Sψ
(k+1)
ξ (y) . (39)

and hence the thesis holds true.

In other words we can say that EM produces scaled reconstructions for scaled input

data. Incidentally, we notice that the same property holds also for ISRA. Now we can

prove the following:

Theorem 4.1. Let us consider the problem (3) with y ∈ Ω ⊂ Y, let DKL be the

discrepancy (7) and µKL(y) > 0 the incompatibility measure. For a given ξ ∈ CX , let

Ψξ(y) the limit solution of EM, {ψ(k)
ξ }k∈N the family of operators associated with EM and

kP the Poisson stopping rule. The pair ({ψ(k)
ξ }, kP ) defines an asymptotic regularization

method on the cone H(CX ) and it does not outside it.

Proof. Let δ > 0, y and yδ be such that ‖y − yδ‖ < δ with ‖y‖ = S > δ and

‖yδ‖ = Sδ > δ. Let ȳ = y/S ans ȳδ = yδ/Sδ. From the definition of Poisson discrepancy

stopping rule (22) and the EM scaling property (Lemma 4.1) we have that kP is the

function assigning to each pair (δ, yδ) the smaller k such that

DKL(ψ
(k)
ξ (ȳδ), ȳδ) ≤ τN

2(S − δ)
. (40)

Moreover, for any ǫ there exists an S such that

DKL(ψ
(k)
ξ (ȳδ), ȳδ) ≥ µKL(ȳ

δ) > µKL(ȳ)− ǫ , (41)

since straightforward computation yields ‖ȳ − ȳδ‖ < 2δ/S and the function µKL is

continuous. When µKL(ȳ) > 0 the conditions (40) and (41) are incompatible as

S becomes large enough and hence k(δ, yδ) is not defined. When µKL(ȳ) = 0 the

inequalities are compatible and hence, being EM convergent, the regularization property

holds when y ∈ H(CX ).

The thesis of Theorem 4.1 holds true also using stopping rules different from

the Poisson discrepancy. For example the weighted LS discrepancy, a first order

approximation of the KL discrepancy, gives rise to a stopping rule [1] for which Theorem

4.1 holds.
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Now we will prove that the KL-KKT stopping rule coupled with EM is an

asymptotic regularization method. We need the following lemmas.

Lemma 4.2. For any yδ ∈ Y, let ψ
(k)
ξ (yδ) be the k-th iteration of EM. For each iteration

k the relation
N
∑

i=1

(Hψ
(k)
ξ (yδ))i =

N
∑

i=1

yδi (42)

holds.

Proof. The thesis follows directly from computations.

Lemma 4.3. For any yδ ∈ Y, let ψ
(k)
ξ (yδ) be the k-th iteration of EM. The following

inequality holds:

EKL(ψ
(k)
ξ (yδ)) ≤

N
∑

i=1

yδi (43)

Proof. We begin by noting that

M
∑

j=1

(ψ
(k)
ξ (yδ))2j

(

HT
2

1

Hψ
(k)
ξ (yδ)

)

j

=

N
∑

i=1

(H2(ψ
(k)
ξ (yδ))2)i

(

1

Hψ
(k)
ξ (yδ)

)

i

. (44)

Then

N
∑

i=1

∑M

j=1 h
2
ij(ψ

(k)
ξ (yδ))2j

∑M

j=1 hij(ψ
(k)
ξ (yδ))j

≤
N
∑

i=1

√

√

√

√

M
∑

j=1

h2ij(ψ
(k)
ξ (yδ))2j

≤
N
∑

i=1

M
∑

j=1

hij(ψ
(k)
ξ (yδ))j ≤

N
∑

i=1

yδi (45)

having used the relation
√

∑M

j=1 h
2
ij(ψ

(k)
ξ (yδ))2j ≤

∑M

j=1 hij(ψ
(k)
ξ (yδ))j and Lemma

4.2.

Now we can prove the following:

Theorem 4.2. Let us consider the problem (3) and let DKL be the discrepancy (7). For

any y ∈ Ω ⊂ Y and for a given ξ ∈ CX , let Ψξ(y) the limit solution of EM algorithm and

{ψ(k)
ξ }k∈N the family of operators associated with EM. If kKL is the KL-KKT stopping

rule, then the pair ({ψ(k)
ξ }k∈N, kKL) is an asymptotic regularization method for Ψξ.

Proof. The EM algorithm is convergent, hence condition (35) is fulfilled if (36) holds

true. Now we check condition (36). Let δ > 0 and y ∈ Ω, we have

inf{kKL(δ, y
δ) | ∀ yδ, ‖yδ − y‖ ≤ δ} = (46)

inf

{

k ∈ N

∣

∣

∣

LKL(ψ
(k)
ξ (yδ), yδ)

EKL(ψ
(k)
ξ (yδ))

≤ τ, ∀ yδ, ‖yδ − y‖ ≤ δ

}

,
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since EKL(ψ
(k)
ξ (yδ)) is positive. Since ψ

(k)
ξ (yδ) converges to some x̂δ and the set

{x ∈ CX | LKL(x, y
δ) ≤ τEKL(x)} is a neighborhood of x̂δ, the set {k ∈

N | LKL(ψ
(k)
ξ (yδ), yδ) ≤ τEKL(ψ

(k)
ξ (yδ))} is not empty. For the EM scaling property

(Lemma 4.1)

LKL(ψ
(k)
ξ (yδ), yδ)

EKL(ψ
(k)
ξ (yδ))

≤ τ ⇔
LKL(ψ

(k)
ξ (ȳδ), ȳδ)

EKL(ψ
(k)
ξ (ȳδ))

≤ τ

Sδ

(47)

where yδ = Sδȳ
δ and ‖ȳδ‖ = 1. Now, we get a lower bound of the set (46) weakening

the condition (47). First, we can consider that, for a given S > δ and ‖y‖ > S we have

Sδ > S − δ for every yδ such that ‖y − yδ‖ < δ. Hence equation (47) implies

LKL(ψ
(k)
ξ (ȳδ), ȳδ)

EKL(ψ
(k)
ξ (ȳδ))

≤ τ

S − δ
(48)

Second, we can take the infimum over ȳδ ∈ Σδ ⊂ SN the N -dimensional sphere, i.e.

s(k) := inf
ȳδ∈SN

LKL(ψ
(k)
ξ (ȳδ), ȳδ)

EKL(ψ
(k)
ξ (ȳδ))

. (49)

The map s : N → R is defined for every k ∈ N, positive, limited and does not approach

to zero for k ∈ N since EKL(ψ
(k)
ξ (ȳδ)) ≤

√
N is limited (see Lemma 4.3). Moreover, it

is asymptotically decreasing to 0, i.e.

lim
k→∞

LKL(ψ
(k)
ξ (y), y) = 0 (50)

for every y ∈ Ω. Hence, we proved that

inf{kKL(δ, y
δ) | ∀ yδ, ‖yδ − y‖ ≤ δ} ≥ inf{k ∈ N | s(k) ≤ τ

S − δ
}. (51)

We can choose S such that k has to arbitrarily increase to fulfill the condition in the

r.h.s. and therefore the thesis is proved.

In Table (1) we present a summary of the results. By comparing the second and

the last column, it is clear that asymptotic regularization plays the role of the standard

one when EM is used to minimize the KL discrepancy.

LS - ISRA KL - EM

Morozov regularization Poisson regularization asymptotic regularization

y ∈ H(CX ) yes y ∈ H(CX ) no* (Th. 3.2) yes (Th. 4.1)

y 6∈ H(CX ) no (Th. 3.1) y 6∈ H(CX ) no* (Th. 3.2) no (Th. 4.1)

KKT KKT

y ∈ H(CX ) yes (Th. 3.3) y ∈ H(CX ) no (Th. 3.4) yes (Th. 4.2)

y 6∈ H(CX ) yes (Th. 3.3) y 6∈ H(CX ) no (Th. 3.4) yes (Th. 4.2)

Table 1. Summary of (asymptotic) regularization properties of the ISRA and EM

algorithms provided with Morozov discrepancy, Poisson discrepancy and KKT stopping

rules. The asterisk (*) means except τ = 2

N
µ(y).
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5. Numerical experiments

In this section we test the proposed regularization algorithm in the case of image

reconstruction from data recorded by a solar hard X-ray satellite. The Reuven Ramaty

High Energy Solar Spectroscopic Imager (RHESSI) [20] mission has been launched by

NASA in Febraury 2002 with the aim of investigating emission and energy transport

mechanisms during solar flares. RHESSI hardware is made of nine pairs of rotating

collimators that time-modulate the incoming photon flux before it is detected by the

corresponding Ge detectors. As a consequence, the RHESSI imaging problem consists

in locally retrieving the photon flux intensity image starting from a given set of count

modulation profiles.

This image reconstruction problem is clearly incompatible, since the model is

not exact and the positivity constraint makes impossible the fitting of the data.

The count profile formation system is described by a non linear model [14] which

is not used to perform inversions owing to its complexity and therefore the imaging

problem is usually solved using a linearized model. This linear operator changes along

some status parameters of the satellite and it can be retrived using the routines of

Solar SoftWare (http://www.lmsal.com/solarsoft/) as well as count modulation

profiles. The software needed to perform the following analysis can be found at

http://www.dima.unige.it/~benvenuto/reg.tar.gz.

We studied the behaviour of EM regularized by the KKT principle for the

reconstruction of the photon flux map of two real flaring events. The first event is

the September 8 2002 flare in the time interval between 01:38:44 and 01:39:35 UT. The

data have been collected by detectors 3 through 8, in the energy range between 25 and

30 keV. The second event is the November 3 2003 flare in the time interval between

01:32:42 and 01:42:25 UT. The data have been collected by detectors 3 through 8, in

the energy range between 12 and 25 keV. During the first event the total number of

counts collected is about 7.45 104, the number of data is N = 3816. During the second

event the total number of counts collected is about 1.38 106 and the number of data is

N = 3168. In both cases the reconstructed field of view is a square of 64 arcseconds

side length corresponding to a 64 by 64 pixel image. The noise on the data is mainly

Poisson. An estimate of the signal-to-noise ratio can be done by averaging the ratios of

the standard deviation over the mean for each datum, i.e.

SNR(y) =
1

N

N
∑

i=1

yi√
yi
. (52)

The estimated signal-to-noise ratio is about 3.95 for the 2002, September 08 event and

19.35 for 2003 November 03.

We applied EM to both data sets, using KL-KKT with τ = 1 in order to stop the

iterations. The reconstruction in the left panel of Figure 1 shows, in the case of the

September event, one coronal source and two footpoints, which is in accordance with

http://www.lmsal.com/solarsoft/
http://www.dima.unige.it/~benvenuto/reg.tar.gz
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Figure 1. EM reconstructions of the September 8 2002 (left) and the November 3

2003 (right) events stopped with the KL-KKT principle for τ = 1.

typical non-thermal models in solar flare physics [15]. In the case of the November event

(Figure 1, right panel) the stopping rule provides a reconstruction comparable with the

ones provided by CLEAN [13] of around the same energy and time interval [16]. For

both events we also studied the behavior of the KL-KKT principle for smaller values of

τ (see Figure 2) and found that the stopping rule always applies and provides higher

values of the optimal iteration number. We notice that the performances of this stopping

rule are quite similar for the two events, despite the fact that the method is applied to

flares characterized by a notably different count amounts. The robustness of the KKT

principle is confirmed in Figure 3 and in Figure 4, containing the reconstruction of the

two events for four values of τ (in particular, for the November event, using smaller

value of τ is able to point out hints of the two footpoints whose presence is confirmed

in CLEAN images obtained at higher energy ranges [16]). The behavior of standard

stopping rules in the case of this application is significantly less robust. For example,

in the case of the November event, the Poisson discrepancy principle never applies for

τ < 29 and for variations of τ in the range [25.5, 25.7] it provides optimal iteration

numbers that differ of up to 103 iterations. We finally notice that the accuracy of this

approach to the RHESSI image reconstruction problem is demonstrated also in [3] in

the case of realistically simulated synthetic count modulation profiles.

6. Conclusion

In this paper we studied a novel stopping rule for constained ML algorithms that

accounts for the constraint in the solution and has a rather straightforward statistical
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Figure 2. Performance of the KL-KKT principle for September 8 2002 (left) and

November 3 2003 (right) events as a function of the number of iterations. On the

y-axis the absolute value of fτ showed in logarithmic scale. The cusps indicate that

fτ passes from positive to negative values and so at that iteration the stopping rule

applies. The legend points out the different values of τ for the different curves.

interpretation. We proved that this stopping rule makes ISRA a regularization algorithm

and provided a generalization of the Tikhonov definition of regularization for which the

stopping rule is regularizing also for EM. We then showed the robustness of this criterion

in two applications involving high energy solar data. We used count modulation profiles

recorded by the X-ray solar mission RHESSI and we reconstructed the X-ray sources

with the new method, obtaining reliable flaring configurations. A comparison with the

reference method in these field has been given. Possible developments of this piece of

research are: the extension of these new stopping rule to the implementation of the

accelerated versions of this image reconstruction approach; the study of its reliability in

the case of ML algorithms with penalty terms; and the study of stopping rules explicitly

depending on the noise level for EM applied to incompatible problems.
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Figure 3. Reconstructions of the September 8 2002 event with the KL-KKT principle

for different values of τ . τ = 1 for the upper left, τ = 0.1 for the upper right, τ = 0.01

for the lower left, τ = 0.001 for the lower right.
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