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Pia 11a, 16145 Genova, Italy
3 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, via
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Abstract. We describe a very fast and automatic formulation of the linear sampling
method for three-dimensional electromagnetic inverse scattering problems. This
formulation is an extension of a no-sampling implementation recently proposed for two-
dimensional configurations. In this 3D framework, regularization occurs independently
not only of the sampling point but even of the polarization of the fundamental solution
used as known term. Furthermore, a very effective automatic procedure for the
selection of the optimal surface describing the scatterer is introduced.

1. Introduction

The linear sampling method [9, 15] is a well-known numerical procedure for

visualizing obstacles and inhomogeneous scatterers from measurements of acoustic or

electromagnetic far-field patterns. At the basis of the method there is the regularized

solution of the discretized and noisy version of a linear integral equation of the first

kind, called the far-field equation, for each point of a computational grid set in a

region containing the scatterer. The linear sampling method is a qualitative method [4]

providing a reconstruction of the location and shape of the scatterer, but not providing

quantitative information on the point values of the refractive index. Its main advantages

are that, to be implemented, it does not need any a priori information on the scatterer

(except that it is located inside a known bounded region); it has very wide applicability

conditions, since it can be formulated in very general acoustic or electromagnetic

§ To whom correspondence should be addressed.
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frameworks, in the case of two-dimensional and three-dimensional configurations, in

the presence of both isotropic and anisotropic scatterers [4, 8, 11, 12, 13, 14, 15]; it is

computationally more effective than methods like non-linear optimization techniques,

which are often applied to inverse scattering problems.

In two recent papers, an augmented formulation of the method has been proposed,

enhancing both the rapidity of the visualization process and the overall degree of

automation of the algorithm. In fact in [1] the method is formulated in a direct

sum of L2 spaces, so that the traditional one-parameter family of integral equations

of the first kind defined by the far-field equation is replaced by a single linear functional

equation. In this approach, from now on called no-sampling linear sampling, a single

regularization procedure is applied to the functional equation (in particular, a single

regularization parameter is selected by means of some optimality criterion) and therefore

the computation of the method is notably faster. In [2] an edge detection algorithm is

applied to no-sampling linear sampling in order to provide an automatic and optimal

selection of the edges of the map visualized by the qualitative method. The resulting

algorithm is able to visualize the profile of the scatterer in a fast and automatic manner

from the far-field data.

However, these two papers deal with two-dimensional inverse scattering problems.

In the present paper we want to extend this no-sampling automatic formulation to a

three-dimensional anisotropic electromagnetic inverse scattering problem. To this aim,

two important critical issues must be accounted for. In the traditional implementation

of the linear sampling method for Maxwell’s equations, the regularized solution of the

far-field equation depends on both the sampling point and the sampling polarization of

the fundamental solution. Therefore, in principle, a different regularization parameter

should be selected not only for each point of a computational grid in a volume containing

the scatterer, but also for each vector in a set of polarizations. To avoid such increase

of the computational effort, heuristic procedures can be introduced, although in [7]

it is pointed out that the reconstruction depends on the choice of the polarization

vector: in particular, in [7, 8] it is observed that the best visualizations are obtained

by combining (with the same weight) the three indicator functions computed for three

independent polarizations. The unifying approach followed in this paper allows replacing

the two-parameters family of far-field equations with a single functional equation whose

regularization occurs independently of both the sampling point and the sampling

polarization, thus removing any problem in choosing the number and/or the distance

of the sampling points, as well as in selecting the sampling polarizations and combining

the corresponding indicator functions.

The second technical issue is concerned with the optimal selection of the scatterer

surface. In linear sampling a point on the boundary induces the norm of the regularized

solution of the far-field equation to grow up. In [2], in a two-dimensional setting, an
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edge detection technique to highlight the contour of the scatterer is realized by means

of deformable models. In principle, this technique could be extended to surfaces in 3D

but, although active contours are reasonably fast, active surfaces [6] require a notable

computational effort to converge to the boundary of the scatterer. The result of this

procedure would be that the time saved by using the no-sampling implementation would

be partly lost by the visualization process based on deformable volumes. Therefore in

the present paper we prefer a different approach: the indicator function is restricted

to an appropriate plane in IR3 and the points of the scatterer surface belonging to this

plane are determined by applying a 2D deformable model, just as in [2]. Then we

compute the average value of the indicator function over this profile and the result is

chosen as the threshold value setting a level surface of the indicator function which is

used to visualize the boundary of the scatterer. This method is easily adapted to the

case in which a non-connected scatterer consists of connected components characterized

by different physical parameters: it suffices to consider restrictions of the indicator

function to regions containing only one connected component and to select a different

cut-off value for each region.

Summarizing, we present here a visualization method for 3D electromagnetic inverse

scattering where no sampling is performed over the volume points or the polarization

vectors and the profile of the scatterer is detected by means of an effective automatic

thresholding of an analytically known indicator function. The result is an extremely fast

algorithm: objects that are reconstructed in around half an hour by traditional linear

sampling on a PC equipped with a 1.6 GHz processor and 1 GB RAM, are reconstructed

with comparable accuracy by this fully no-sampling automatic procedure in around one

minute.

The plan of the paper is as follows. In Section 2 we shortly summarize some results of

[8], i.e. we introduce the far-field equation and recall the general theorem concerned with

its approximate solution. In Section 3 we perform a rather general discretization of the

far-field equation (the meshes in which the incidence and the observation directions are

discretized do not need to be uniform or equal to each other) and provide the traditional

formulation of the linear sampling method. Section 4 introduces the new formulation:

with respect to [1], the generalization consists not only in passing from a 2D to a 3D

framework and taking into account the sampling polarizations, but also in considering

more general discretization meshes. Section 5 exploits the computational tools provided

by [2] to perform some numerical examples illustrating the notable effectiveness of the

new approach. Our conclusions are offered in Section 6.
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2. The far-field equation

A very general electromagnetic inverse scattering problem [8, 10] is concerned with

an incident time-harmonic field ~Ei = ~Ei(~x), entire solution of

curl curl ~Ei(~x)− k2 ~Ei(~x) = 0, ~x ∈ IR3, (2.1)

scattering against an inhomogeneous and possibly anisotropic target, whose support is

represented, in a Cartesian coordinate system, by a bounded domain D ⊂ IR3, such

that D is an open and Lipschitz domain of IR3 with connected complement. The

physical properties of the scatterer are described by a 3×3 symmetric matrix N = N(~x)

(representing the possibly anisotropic index of refraction), whose entries are bounded

complex-valued functions defined in IR3 and such that N is the identity matrix outside

D. The relationship between the scatterer and the total electric field ~E = ~E(~x) is

expressed by the equation

curl curl ~E(~x)− k2N(~x) ~E(~x) = 0, ~x ∈ IR3, (2.2)

where

~E(~x) = ~Es(~x) + ~Ei(~x), ~x ∈ IR3, (2.3)

and the scattered field ~Es = ~Es(~x) satisfies the Silver-Müller radiation condition

lim
|~x|→∞

(
curl ~Es × ~x− ik|~x| ~Es

)
= 0 (2.4)

uniformly in x̂ = ~x
|~x| .

In the following we shall assume that the electric incident field is a plane wave

propagating along the direction d̂ and polarized along ~p ∈ IR3 (~p · d̂ = 0), i.e.

~Ei(~x) = ~p eik~x·d̂, ~x ∈ IR3. (2.5)

The Stratton-Chu formula [10] implies that the radiating solutions ~Es to the scattering

problem have the asymptotic behavior

~Es(~x) =
eikr

r

{
~E∞(x̂; d̂, ~p) +O

(
1

r

)}
as r = |~x| → ∞, (2.6)

where the far-field pattern ~E∞(·; d̂, ~p) is defined on the unit sphere Ω := {~x ∈ IR3, |~x| =
1}. It is worth noting that ~E∞(·; d̂, ~p) is a tangential vector field, i.e. it belongs to

L2
t (Ω) := {~f(·) ∈ (L2(Ω))3 | ~f(x̂) · ~ν(x̂) = 0 ∀ x̂ ∈ Ω}, where ~ν(x̂) is the normal unit

vector to Ω in x̂ and ~f(x̂) ·~ν(x̂) is the usual scalar product in IC3 between ~f(x̂) and ~ν(x̂).

The set of functions L2
t (Ω) is a Hilbert space with the scalar product defined by

(
~f1(·) , ~f2(·)

)
L2

t (Ω)
:=

∫

Ω

~f1(d̂) · ~f2(d̂) ds(d̂) ∀ ~f1(·), ~f2(·) ∈ L2
t (Ω). (2.7)
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Let us now introduce the far-field equation in the unknown ~g~z,~q(·) for the 3D vector

case [8]:
∫

Ω

~E∞(x̂; d̂, ~g~z,~q(d̂))ds(d̂) = ~Ee,∞(x̂; ~z, ~q). (2.8)

Here ~z and ~q are respectively the sampling point in IR3 and the sampling polarization;
~E∞(x̂; d̂, ~g~z,~q(d̂)) denotes the far-field pattern of the field scattered by the target along

direction x̂ when it is illuminated by a plane wave impinging from direction d̂ and

polarized along ~g~z,~q(d̂); the function ~g~z,~q(·) is in L2
t (Ω) for each ~z ∈ IR3 and ~q ∈ IR3;

finally, ~Ee,∞(x̂; ~z, ~q) is the far-field pattern of an elementary dipole located in ~z and

oriented along ~q:

~Ee,∞(x̂; ~z, ~q) :=
ik

4π
(x̂× ~q)× x̂ e−ikx̂·~z. (2.9)

We now observe that, owing to the linear dependence of the far-field patterns on the

polarizations (see, e.g., (2.9)) and to the linearity of the far-field equation (2.8), we do

not loose in generality by assuming |~q| = 1; hence in the following we shall consider

~q = q̂ ∈ Ω. Then, if we introduce the far-field operator F : L2
t (Ω) → L2

t (Ω) defined by

(F~g(·)) (x̂) :=
∫

Ω

~E∞(x̂; d̂, ~g(d̂))ds(d̂), (2.10)

the far-field equation (2.8) can be written as

(F~g~z,q̂(·)) (x̂) = ~Ee,∞(x̂; ~z, q̂). (2.11)

At the basis of the linear sampling method there is the following general theorem [8].

Theorem 2.1 (general theorem). Let us assume that k is not a transmission eigen-

value and let F be the far-field operator (2.10); moreover, let q̂ be any element of Ω.

Then we have:

1) if ~z ∈ D, then for every ε > 0 there exists a solution ~g~z,q̂(·) ∈ L2
t (Ω) of the inequality

‖(F~g~z,q̂(·))(·)− ~Ee,∞(·; ~z, q̂)‖L2
t (Ω) < ε, (2.12)

such that

lim
~z→∂D

‖~g~z,q̂(·)‖L2
t (Ω) = ∞; (2.13)

2) if ~z 6∈ D, then for every ε > 0 and δ > 0 there exists a solution ~g~z,q̂(·) ∈ L2
t (Ω) of the

inequality

‖(F~g~z,q̂(·))(·)− ~Ee,∞(·; ~z, q̂)‖L2
t (Ω) < ε + δ, (2.14)

such that

lim
δ→0

‖~g~z,q̂(·)‖L2
t (Ω) = ∞. (2.15)
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Analogous theorems hold for scattering problems formulated for conductors or partially

coated objects: in addition to [8], see [4] and references therein.

3. Discretization and the linear sampling method

The aim of the present section is to perform an angular discretization of the far-

field equation that allows one to deal with very general scattering situations, such as

non-uniform displacement of the emitting and receiving antennas and limited aperture

data. The first step towards such a discretization is to project the far-field patterns onto

some particular basis. A possible choice is the spherical basis {r̂(ŵ), θ̂(ŵ), ϕ̂(ŵ)} (with

r̂(ŵ) = ŵ) intrinsic to the generic direction ŵ. Since the far-field pattern ~E∞(·; d̂, ~p)

belongs to L2
t (Ω), it has no component along r̂(x̂) and we can write

~E∞(x̂; d̂, ~p) = Eθ
∞(x̂; d̂, ~p)θ̂(x̂) + Eϕ

∞(x̂; d̂, ~p)ϕ̂(x̂), (3.1)

where Eθ
∞(x̂; d̂, ~p) := ~E∞(x̂; d̂, ~p) · θ̂(x̂) and Eϕ

∞(x̂; d̂, ~p) := ~E∞(x̂; d̂, ~p) · ϕ̂(x̂). Moreover,

since ~p · d̂ = 0, then ~p can be decomposed as

~p = pθθ̂(d̂) + pϕϕ̂(d̂), (3.2)

where pθ := ~p · θ̂(d̂) and pϕ := ~p · ϕ̂(d̂). Hence, exploiting the linearity of the far-field

pattern with respect to ~p, it is possible to write

Eθ
∞(x̂; d̂, ~p) = pθEθθ

∞(x̂; d̂) + pϕEθϕ
∞ (x̂; d̂), (3.3)

Eϕ
∞(x̂; d̂, ~p) = pθEϕθ

∞ (x̂; d̂) + pϕEϕϕ
∞ (x̂; d̂), (3.4)

where

Eθθ
∞(x̂; d̂) := Eθ

∞(x̂; d̂, θ̂(d̂)), (3.5)

Eθϕ
∞ (x̂; d̂) := Eθ

∞(x̂; d̂, ϕ̂(d̂)), (3.6)

Eϕθ
∞ (x̂; d̂) := Eϕ

∞(x̂; d̂, θ̂(d̂)), (3.7)

Eϕϕ
∞ (x̂; d̂) := Eϕ

∞(x̂; d̂, ϕ̂(d̂)). (3.8)

Analogously to (3.1), the far-field pattern ~Ee,∞(·; ~z, q̂) ∈ L2
t (Ω), defined by (2.9), can be

written in terms of θ̂(x̂) and ϕ̂(x̂) as

~Ee,∞(x̂; ~z, q̂) = Eθ
e,∞(x̂; ~z, q̂)θ̂(x̂) + Eϕ

e,∞(x̂; ~z, q̂)ϕ̂(x̂), (3.9)

where Eθ
e,∞(x̂; ~z, q̂) := ~Ee,∞(x̂; ~z, q̂) · θ̂(x̂) and Eϕ

e,∞(x̂; ~z, q̂) := ~Ee,∞(x̂; ~z, q̂) · ϕ̂(x̂). As a

consequence, the vector equation (2.11) can be split into two scalar ones:

(F~g~z,q̂(·)) (x̂) · θ̂(x̂) = Eθ
e,∞(x̂; ~z, q̂), (3.10)

(F~g~z,q̂(·)) (x̂) · ϕ̂(x̂) = Eϕ
e,∞(x̂; ~z, q̂), (3.11)
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i.e., recalling definition (2.10) and decompositions (3.1), (3.3), (3.4),
∫

Ω
[gθ

~z,q̂(d̂)Eθθ
∞(x̂; d̂) + gϕ

~z,q̂(d̂)Eθϕ
∞ (x̂; d̂)] ds(d̂) = Eθ

e,∞(x̂; ~z, q̂), (3.12)
∫

Ω
[gθ

~z,q̂(d̂)Eϕθ
∞ (x̂; d̂) + gϕ

~z,q̂(d̂)Eϕϕ
∞ (x̂; d̂)] ds(d̂) = Eϕ

e,∞(x̂; ~z, q̂). (3.13)

In real experiments, the far-field pattern is measured for Lx̂ = Tx̂Fx̂ observation

directions and Ld̂ = Td̂Fd̂ incidence directions. The observation directions are denoted

as

x̂`x̂(i,j) = (sin θx̂
i cos ϕx̂

j , sin θx̂
i sin ϕx̂

j , cos θx̂
i ) ∈ Ω, (3.14)

where, for all integers i = 0, . . . , Tx̂ − 1 and j = 0, . . . , Fx̂ − 1, we have put

`x̂(i, j) := iFx̂ + j, θx̂
i ∈ (0; π), ϕx̂

j ∈ [0, 2π); (3.15)

analogously, the incidence directions are denoted as

d̂`d̂(i,j) = (sin θd̂
i cos ϕd̂

j , sin θd̂
i sin ϕd̂

j , cos θd̂
i ) ∈ Ω, (3.16)

where, for all integers i = 0, . . . , Td̂ − 1 and j = 0, . . . , Fd̂ − 1, we have put

`d̂(i, j) := iFd̂ + j, θd̂
i ∈ (0, π), ϕd̂

j ∈ [0, 2π). (3.17)

As a consequence, equations (3.12) and (3.13) can be discretized by requiring that,

for all `x̂ = 0, . . . , Lx̂ − 1,

Ld̂−1∑

`d̂=0

[gθ
~z,q̂(d̂`d̂

)Eθθ
∞(x̂`x̂

; d̂`d̂
) + gϕ

~z,q̂(d̂`d̂
)Eθϕ

∞ (x̂`x̂
; d̂`d̂

)] ∆s`d̂
= Eθ

e,∞(x̂`x̂
; ~z, q̂), (3.18)

Ld̂−1∑

`d̂=0

[gθ
~z,q̂(d̂`d̂

)Eϕθ
∞ (x̂`x̂

; d̂`d̂
) + gϕ

~z,q̂(d̂`d̂
)Eϕϕ

∞ (x̂`x̂
; d̂`d̂

)] ∆s`d̂
= Eϕ

e,∞(x̂`x̂
; ~z, q̂), (3.19)

where, for all i = 0, . . . , Td̂ − 1 and j = 0, . . . , Fd̂ − 1, we have defined

∆s`d̂
:= sin θd̂

i ∆θd̂
i ∆ϕd̂

j > 0, (3.20)

with ∆θd̂
i := θd̂

i+1 − θd̂
i > 0 and ∆ϕd̂

j := ϕd̂
j+1 − ϕd̂

j > 0. In particular, in the case of

uniform discretization we have ∆θd̂
i = π/Td̂ and ∆ϕd̂

j = 2π/Fd̂.

Equations (3.18) and (3.19) can be written in a more compact form by using the

matrix notation:

E∞∆Sd̂ G~z,q̂ = Ee,∞(~z, q̂), (3.21)

where we have defined ∆Sd̂ as the diagonal and positive-definite matrix of 2Ld̂ × 2Ld̂

elements

∆Sd̂ :=

(
∆sd̂ 0

0 ∆sd̂

)
(3.22)
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with ∆sd̂ := diag
(
∆s`d̂

)
`d̂=0,...,Ld̂−1

; G~z,q̂ as the column vector of length 2Ld̂

G~z,q̂ :=

(
gθ

~z,q̂

gϕ
~z,q̂

)
(3.23)

with gθ
~z,q̂ :=

(
gθ

~z,q̂(d̂`d̂
)
)

`d̂=0,...,Ld̂−1
, gϕ

~z,q̂ :=
(
gϕ

~z,q̂(d̂`d̂
)
)

`d̂=0,...,Ld̂−1
; Ee,∞(~z, q̂) as the column

vector of length 2Lx̂

Ee,∞(~z, q̂) :=

(
Eθ

e,∞(~z, q̂)

Eϕ
e,∞(~z, q̂)

)
(3.24)

with Eθ
e,∞(~z, q̂) :=

(
Eθ

e,∞(x̂`x̂
; ~z, q̂)

)
`x̂=0,...,Lx̂−1

, Eϕ
e,∞(~z, q̂) :=

(
Eϕ

e,∞(x̂`x̂
; ~z, q̂)

)
`x̂=0,...,Lx̂−1

;

finally, the 2Lx̂ × 2Ld̂ matrix E∞ is defined as

E∞ :=

(
Eθθ
∞ Eθϕ

∞
Eϕθ
∞ Eϕϕ

∞

)
(3.25)

with

Eθθ
∞ :=

(
Eθθ
∞(x̂`x̂

; d̂`d̂
)
)

`x̂=0,...,Lx̂−1;`d̂=0,...,Ld̂−1
,

Eθϕ
∞ :=

(
Eθϕ
∞ (x̂`x̂

; d̂`d̂
)
)

`x̂=0,...,Lx̂−1;`d̂=0,...,Ld̂−1
,

Eϕθ
∞ :=

(
Eϕθ
∞ (x̂`x̂

; d̂`d̂
)
)

`x̂=0,...,Lx̂−1;`d̂=0,...,Ld̂−1
,

Eϕϕ
∞ :=

(
Eϕϕ
∞ (x̂`x̂

; d̂`d̂
)
)

`x̂=0,...,Lx̂−1;`d̂=0,...,Ld̂−1
.

Remark 3.1. The positive-definite matrix ∆Sd̂ given in (3.22) defines a (weighted)

scalar product (·, ·)Ld̂
in IC2Ld̂ , obtained from a Ld̂−angular discretization of the scalar

product (2.7). If w1 and w2 are two column vectors in IC2Ld̂ , we have

(w1,w2)Ld̂
:= wT

1 ∆Sd̂ w2, (3.26)

where wT
1 denotes the transpose of w1 and w2 the complex conjugate of w2. The scalar

product (3.26) induces a norm, denoted with ‖·‖Ld̂
, in IC2Ld̂ ; we shall write

(
IC2Ld̂ , (·, ·)Ld̂

)

to denote the vector space IC2Ld̂ endowed with the scalar product (·, ·)Ld̂
. In a completely

analogous way, we can consider the space
(
IC2Lx̂ , (·, ·)Lx̂

)
, by simply replacing the weight

matrix (3.22) with its analogous ∆Sx̂, defined in terms of ∆s`x̂
:= sin θx̂

i ∆θx̂
i ∆ϕx̂

j > 0.

In real applications, the far-field patterns are blurred by the noise affecting the

measurement processes, so that only a noisy version EH
∞ of the far-field patterns is

available, i.e.

EH
∞ := E∞ + H, (3.27)
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where H is the noise matrix. Then, we can define the linear operator

Fh :
(
IC2Ld̂ , (·, ·)Ld̂

)
→

(
IC2Lx̂ , (·, ·)Lx̂

)

x 7→ EH
∞∆Sd̂ x;

(3.28)

h is used as a superscript to distinguish Fh from the corresponding noise-free version

F and also to denote the noise bound h ≥ ‖Fh−F‖, where ‖ · ‖ indicates the operator

norm. By virtue of (3.28), EH
∞∆Sd̂ =: Fh is the matrix representation of the linear

operator Fh; moreover, remembering (3.21), we can now write the noisy and discretized

version of the far-field equation (2.8) in the form:

FhG~z,q̂ = Ee,∞(~z, q̂). (3.29)

The ill-conditioning of equation (3.29) requires a regularization procedure; in particular,

Tikhonov regularization method [17] consists in determining

G~z,q̂; α = argmin
G∈IC

2L
d̂

{∥∥∥FhG− Ee,∞(~z, q̂)
∥∥∥
2

Lx̂

+ α ‖G‖2
Ld̂

}
. (3.30)

Given (3.30), the optimal regularized solution is obtained by choosing for the

regularization parameter α the value α∗(~z, q̂) determined by the generalized discrepancy

principle, i.e. by finding the zero of the generalized discrepancy function ρ : (0, +∞) →
IR defined as [17]

ρ(α) :=
∥∥∥FhG~z,q̂; α − Ee,∞(~z, q̂)

∥∥∥
2

Lx̂

− h2 ‖G~z,q̂; α‖2
Ld̂

. (3.31)

An explicit form for this regularized solution can be determined by using the singular

representation [3, 10] of the linear operator Fh, whose singular system is related to

that of the matrix Fh according to Theorem A.1 in the Appendix. If we denote with

{σh
p ,uh

p ,v
h
p}rh−1

p=0 (where σh
0 ≥ σh

1 ≥ . . . ≥ σh
rh−1 and rh := rankFh) the singular system

of Fh and if α∗(~z, q̂) is the zero of the generalized discrepancy function (3.31), it turns

out that the optimal Tikhonov regularized solution of (3.29) is given by [3, 10]:

G~z,q̂; α∗(~z,q̂) =
rh−1∑

p=0

σh
p

(σh
p )2 + α∗(~z, q̂)

(
Ee,∞(~z, q̂),vh

p

)
Lx̂

uh
p . (3.32)

Then, inspired by Theorem 2.1, the linear sampling method allows one to visualize the

scatterer profile by performing the following steps:

• take a grid of points Z ⊂ IR3 covering the scatterer and choose a sampling

polarization q̂;

• for each grid point ~z ∈ Z, determine the optimal Tikhonov regularized solution

(3.32);

• for each grid point ~z ∈ Z, consider the quantity
∥∥∥G~z,q̂; α∗(~z,q̂)

∥∥∥
Ld̂

or a suitable

combination of the analogous quantities obtained for different choices of q̂ [8];
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• visualize the profile of the scatterer as the set of grid points in which the previous

combination becomes mostly large or small, depending on the analytical form

chosen for the combination itself.

It is worth noting that
∥∥∥G~z,q̂; α∗(~z,q̂)

∥∥∥
2

Ld̂

can be explicitly computed, by using (3.32), as

∥∥∥G~z,q̂; α∗(~z,q̂)

∥∥∥
2

Ld̂

=
rh−1∑

p=0

(σh
p )2

[
(σh

p )2 + α∗(~z, q̂)
]2

∣∣∣∣
(
Ee,∞(~z, q̂),vh

p

)
Lx̂

∣∣∣∣
2

. (3.33)

In this implementation the optimal regularization parameter α∗(~z, q̂) explicitly depends

on the grid point ~z and the prefixed q̂ and therefore it must be computed a number of

times equal to the product of the number of grid points times the number of polarizations

sampled in Ω.

As a final remark, we point out that this discretization can be easily generalized

to the case of limited aperture data. It suffices to consider θd̂
i ∈

(
θ

d̂

1, θ
d̂

2

)
⊂ (0, π) for

i = 0, . . . , Td̂− 1; ϕd̂
j ∈

[
ϕd̂

1, ϕ
d̂
2

)
⊂ [0, 2π) for j = 0, . . . , Fd̂− 1; θx̂

i ∈
(
θ

x̂

1 , θ
x̂

2

)
⊂ (0, π) for

i = 0, . . . , Tx̂ − 1; ϕx̂
j ∈

[
ϕx̂

1 , ϕ
x̂
2

)
⊂ [0, 2π) for j = 0, . . . , Fx̂ − 1.

4. A no-sampling implementation of the linear sampling method

The key-idea of no-sampling is to replace the discrete grid Z with a continuous

one T := [−A1, A1]× [−A2, A2] × [−A3, A3] ⊂ IR3 and, furthermore, to replace a finite

set of sampled polarizations with Ω. This approach, whose purpose is to increase the

computational effectiveness and the automation degree of the traditional linear sampling

method, amounts to regarding expression (3.33) as a sampled version of a function

defined over T × Ω. The critical issue in this process is that, while the dependence of∥∥∥G~z,q̂; α∗(~z,q̂)

∥∥∥
2

Ld̂

on ~z and q̂ is explicitly known for the term Ee,∞(~z, q̂) (see (2.9), (3.9),

(3.24), (3.33)), this is not true for the optimal value of the regularization parameter, since

α∗(~z, q̂) can only be computed numerically as the zero of the generalized discrepancy

function (3.31). This problem can be solved by setting the formulation of the method

in a new mathematical framework, which enables us to consider as a unique functional

equation the infinitely many algebraic linear systems

FhG(~z, q̂) = Ee,∞(~z, q̂) ∀~z ∈ T, ∀q̂ ∈ Ω (4.1)

that would arise from (3.29) if, with a “naive” procedure, the unknown vector G~z,q̂ were

simply regarded as an unknown function G(~z, q̂) of the continuous parameters ~z and q̂.

The new mathematical setting requires the introduction of two functional spaces.

Given the total number Ld̂ of incidence directions, let us consider the Hilbert space
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[L2(B)]
2Ld̂ , where B := T × Ω, equipped with the (weighted) scalar product

(f(·),g(·))2,Ld̂
:=

L
d̂
−1∑

`d̂=0

∆s`d̂
(f`d̂

(·), g`d̂
(·))L2(B) +

L
d̂
−1∑

`d̂=0

∆s`d̂
(fLd̂+`d̂

(·), gLd̂+`d̂
(·))L2(B) (4.2)

for all f(·) := {ft(·)}2Ld̂−1
t=0 , g(·) := {gt(·)}2Ld̂−1

t=0 ∈ [L2(B)]
2Ld̂ , where the weights ∆s`d̂

are defined in (3.20) and where (·, ·)L2(B) denotes the usual scalar product in L2(B);

moreover, we shall denote by ‖ · ‖2,Ld̂
the induced norm, i.e.

‖f(·)‖2,Ld̂
:=

√∫

B
‖f(~z, q̂)‖2

Ld̂
d~z ds(q̂) . (4.3)

In a completely analogous way we can define the Hilbert space [L2(B)]
2Lx̂ , where Lx̂ is

the total number of observation directions.

We can now introduce the following linear operator, whose aim is that of enabling

the operator Fh, defined in (3.28), to act on 2Ld̂−uples of functions, rather than on

2Ld̂−uples of complex numbers.

Definition 4.1: The linear operator Fh : [L2(B)]
2Ld̂ → [L2(B)]

2Lx̂ is defined as

[
FhG(·)

]
(·) :=





2Ld̂−1∑

t=0

(Fh)st Gt(·)




2Lx̂−1

s=0

, (4.4)

where G(·) := {Gt(·)}2Ld̂−1
t=0 ∈ [L2(B)]

2Ld̂ and (Fh)st are the elements of the matrix Fh.

Theorem 4.2: The following properties for the linear operator Fh hold:

i) it is continuous, but not compact;

ii) its kernel N (Fh) is given by:

N (Fh) =
{
G(·) ∈

[
L2(B)

]2Ld̂ | G(~z, q̂) ∈ N (Fh) f.a.a. (~z, q̂) ∈ B
}

; (4.5)

iii) if G(·) ∈ [L2(B)]
2Ld̂ is such that G(~z, q̂) ∈ N (Fh)⊥ for almost all (~z, q̂) ∈ B, then

G(·) ∈ N (Fh)⊥, where the orthogonality must be intended with respect to the scalar

product of the corresponding vector space.

Proof . These properties can be proved in full analogy with Theorem 3.2 and Remark

3.3 in [1]. 2
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The non-compactness of Fh does not prevent us from using the singular representation

of the linear operator Fh. Hence, we obtain the following expression for Fh:

[FhG(·)](·) =





rh−1∑

p=0

σh
p vh

p,s (G(·),uh
p)Ld̂





2Lx̂−1

s=0

∀G(·) ∈
[
L2(B)

]2Ld̂ , (4.6)

where vh
p,s is the s-th component of vh

p and (G(·),uh
p)Ld̂

is defined as the element in

L2(B) such that

(G(·),uh
p)Ld̂

: B 3 (~z, q̂) 7→ (G(~z, q̂),uh
p)Ld̂

∈ IC. (4.7)

If we denote with F the corresponding noise-free version of Fh, by using representation

(4.6) for Fh and the analogous one for F, we can easily prove that

‖Fh − F‖ = ‖Fh −F‖ = |σh
0 − σ0| ≤ h, (4.8)

where σ0 is the largest singular value of F : this means that the bounds on the levels of

noise affecting Fh and Fh are the same, i.e. equal to h.

We can now use the operator Fh to collect the infinitely many algebraic systems

(4.1) into the following single functional equation, written in [L2(B)]2Lx̂ for the unknown

G(·) ∈ [L2(B)]2Ld̂ :

[FhG(·)](·) = Ee,∞(·), (4.9)

where Ee,∞(·) is the element of [L2(B)]2Lx̂ obtained from Ee,∞(~z, q̂) by simply regarding

the sampling pair (~z, q̂) as a variable on B. It is now clear that the regularization of the

previous equation (4.9) requires a single-step procedure, thus providing a single value

α∗ for the regularization parameter, which is independent of both ~z and q̂ (however, in

general, α∗ may depend on the choice of the investigation domain T ). Then, the next

problem to be solved is how to compute the Tikhonov regularized solution of equation

(4.9): this task is accomplished by the following theorem, which shows that, for a

generic α, both the generalized and the regularized solutions of (4.9) are obtained from

the generalized and regularized solutions of (4.1) by simply regarding the sampling pair

(~z, q̂) as a variable on B.

Theorem 4.3: The generalized and Tikhonov regularized solutions of equation (4.9) are

given by

Gh†(·) =
rh−1∑

p=0

1

σh
p

(
Ee,∞(·),vh

p

)
Lx̂

uh
p (4.10)

and

Gα(·) =
rh−1∑

p=0

σh
p

(σh
p )2 + α

(
Ee,∞(·),vh

p

)
Lx̂

uh
p . (4.11)



13

Proof. We prove the result for the generalized solution (the result for the Tikhonov

regularized solution can be shown in an analogous way). Since the generalized solution

Gh†(~z, q̂) of equation (4.1) is its (unique) least-squares solution of minimum norm, then

for any G(·) in [L2(B)]2Ld̂ and for almost all (~z, q̂) ∈ B it holds:
∥∥∥FhGh†(~z, q̂)− Ee,∞(~z, q̂)

∥∥∥
2

Lx̂

≤
∥∥∥FhG(~z, q̂)− Ee,∞(~z, q̂)

∥∥∥
2

Lx̂

, (4.12)

and then∫

B

∥∥∥FhGh†(~z, q̂)− Ee,∞(~z, q̂)
∥∥∥
2

Lx̂

d~z ds(q̂) ≤
∫

B

∥∥∥FhG(~z, q̂)− Ee,∞(~z, q̂)
∥∥∥
2

Lx̂

d~z ds(q̂).(4.13)

It is now useful to observe that, by virtue of definition (4.4), for any G(·) in [L2(B)]2Ld̂

it holds:

FhG(~z, q̂) = [FhG(·)](~z, q̂); (4.14)

as a consequence, we can rewrite the previous inequality (4.13) as
∫

B

∥∥∥
[
FhGh†(·)

]
(~z, q̂)− Ee,∞(~z, q̂)

∥∥∥
2

Lx̂

d~z ds(q̂) ≤

≤
∫

B

∥∥∥
[
FhG(·)

]
(~z, q̂)− Ee,∞(~z, q̂)

∥∥∥
2

Lx̂

d~z ds(q̂), (4.15)

having denoted with Gh†(·) the element in [L2(B)]2Ld̂ defined in (4.10) and simply

obtained from Gh†(~z, q̂) when the sampling pair (~z, q̂) is regarded as a variable on B.

Recalling definition (4.3) and considering its analogous for [L2(B)]2Lx̂ , we can rewrite

inequality (4.15) as
∥∥∥
[
FhGh†(·)

]
(·)− Ee,∞(·)

∥∥∥
2

2,Lx̂

≤
∥∥∥
[
FhG(·)

]
(·)− Ee,∞(·)

∥∥∥
2

2,Lx̂

, (4.16)

whence we immediately get

Gh†(·) = argmin
∥∥∥
[
FhG(·)

]
(·)− Ee,∞(·)

∥∥∥
2

2,Lx̂

, (4.17)

since inequality (4.16) holds for all G(·) in [L2(B)]2Ld̂ .

Relation (4.17) states that Gh†(·) is a least-squares solution of equation (4.9); to

show that its norm is minimum (and, consequently, that it is the generalized solution of

(4.9)), we recall that Gh†(~z, q̂) ∈ N (Fh) for all (~z, q̂) in B: then, by virtue of statement

iii) in Theorem 4.2, we find that Gh†(·) ∈ N (Fh). This concludes the proof. 2

The final step is now to fix the optimal value of the regularization parameter α,

which, in expression (4.11), is still generic. This task can be accomplished by using the

generalized discrepancy principle in the new functional context, i.e. by finding the zero

of the new generalized discrepancy function

ρ(α) =
∥∥∥
[
FhGα(·)

]
(·)− Ee,∞(·)

∥∥∥
2

2,Lx̂

− h2‖Gα(·)‖2
2,Ld̂

, (4.18)
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which, by virtue of (4.3), (4.6) and (4.11), can be written as

ρ(α) =
rh−1∑

p=0

α2 − h2(σh
p )2

[α + (σh
p )2]2

∫

B

∣∣∣∣
(
Ee,∞(~z, q̂) , vh

p

)
Lx̂

∣∣∣∣
2

d~z ds(q̂). (4.19)

It is very easy to prove that the solution of the equation ρ(α) = 0 belongs to the interval

[hσh
rh−1, hσh

0 ]: this information can be useful when the solution is numerically computed.

Moreover, remembering that B = T × Ω and exploiting the linearity of Ee,∞(~z, q̂) with

respect to q̂ (see (2.9), (3.9), (3.24)), it follows that

∫

B

∣∣∣∣
(
Ee,∞(~z, q̂) , vh

p

)
Lx̂

∣∣∣∣
2

d~z ds(q̂) =
4π

3

3∑

j=1

∫

T

∣∣∣∣
(
Ee,∞(~z, êj) , vh

p

)
Lx̂

∣∣∣∣
2

d~z, (4.20)

where {êj : j = 1, 2, 3} is the canonical basis of IR3. Now, taking into account the

explicit expression of Ee,∞(~z, q̂), as given by (2.9), (3.9) and (3.24), we can analytically

compute the integral on T appearing in equality (4.20). To this end, for any j ∈ {1, 2, 3}
we introduce the complex vector wj ∈ ICLx̂ whose `x̂-th component, ∀`x̂ = 0, . . . , Lx̂− 1,

is defined as

wj,`x̂
:= vh

p,`x̂
∆s`x̂

[(x̂`x̂
× êj)× x̂`x̂

] · θ̂(x̂`x̂
) + (4.21)

+ vh
p,`x̂+Lx̂

∆s`x̂
[(x̂`x̂

× êj)× x̂`x̂
] · ϕ̂(x̂`x̂

),

where vh
p,`x̂

is the `x̂-th component of the singular vector vh
p ∈ IC2Lx̂ , ∆s`x̂

is defined at

the end of Remark 3.1 and x̂`x̂
is given by (3.14); then, a simple computation leads to

∫

T

∣∣∣∣
(
Ee,∞(~z, êj) , vh

p

)
Lx̂

∣∣∣∣
2

d~z = wT
j Swj, (4.22)

where S is the square real matrix of Lx̂ × Lx̂ elements defined as

S`1
x̂
`2
x̂

:=
k2

2π2

3∏

j=1

Aj sinc

[
kAj

π

(
x̂`1

x̂
− x̂`2

x̂

)
· êj

]
∀`1

x̂, `
2
x̂ = 0, . . . , Lx̂ − 1. (4.23)

We recall that in equality (4.23) the positive numbers Aj are the half-lengths of the

sides of the parallelepiped T =
∏3

j=1[−Aj, Aj] representing our domain of investigation.

Hence, from equations (4.20) and (4.22) it follows that

∫

B

∣∣∣∣
(
Ee,∞(~z, q̂) , vh

p

)
Lx̂

∣∣∣∣
2

d~z ds(q̂) =
4π

3

3∑

j=1

wT
j Swj. (4.24)

By inserting this result into (4.19), we obtain for the generalized discrepancy ρ(α)

an explicit analytical expression allowing a very fast computation of its zero α∗; by

using such value for the regularization parameter α in (4.11), we find the following

representation for the optimal regularized solution of the functional problem (4.9):

Gα∗(·) =
rh−1∑

p=0

σh
p

(σh
p )2 + α∗

(
Ee,∞(·),vh

p

)
Lx̂

uh
p . (4.25)
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The most general indicator function we can now consider is J (Ψ), where J : [0, +∞) →
IR is an appropriate monotonic function and

Ψ(~z) :=
∫

Ω
‖Gα∗(~z, q̂)‖2

Lx̂
ds(q̂) =

=
4π

3

3∑

j=1

rh−1∑

p=0

(σh
p )2

[(σh
p )2 + α∗]2

∣∣∣∣
(
Ee,∞(~z, êj),v

h
p

)
Lx̂

∣∣∣∣
2

∀~z ∈ T. (4.26)

The analytic form (4.26) of Ψ, which represents the core of the indicator function,

justifies the name “no-sampling” for our approach: indeed, α∗ does not depend on

the sampling pair (~z, q̂), the term Ee,∞(~z, êj) is analytically known and the singular

system {σh
p ,uh

p ,v
h
p}rh−1

p=0 of the operator Fh is determined from the far-field patterns

measured. Moreover, as highlighted by (4.20) and (4.26), in our approach the three

independent polarizations êj naturally play an equally important role in forming the

indicator function: as a consequence, the heuristic procedure adopted in [8] to average

the contributions of the three polarizations êj is automatically incorporated in the new

rigorous formalism.

Of course, Theorem 4.3 now inspires a new implementation of the linear sampling

method, whereby the contour of the scatterer is detected by all points in which the

indicator function J(Ψ) becomes mostly large or small, depending on the choice of J .

5. Numerical applications

In this section we want to show that our no-sampling implementation yields

reconstructions that are very similar to those obtained by means of the traditional

approach based on a sampling in the physical and polarization spaces, but in an

extremely reduced amount of time and in a completely automatic fashion. In general,

the 3D reconstruction of the scatterer is obtained by plotting the C–level surface of the

indicator function J (Ψ), i.e. the surface described by the Cartesian equation

J [Ψ(~z)] = C, ~z ∈ T, (5.1)

where C ∈ [min~z∈T J [Ψ(~z)] , max~z∈T J [Ψ(~z)] ] is set to obtain the optimal visualization.

Our aim is now to give a recipe to fix in an automatic way the C–level surface of J (Ψ).

An effective approach is the following three-step algorithm.

(i) Consider the 2D indicator function J(β), where β is the 2D map

β : IR2 3 (u1, u2) 7→ Ψ [ξ(u1, u2)] ∈ IR (5.2)

and ξ : IR2 3 (u1, u2) 7→ (a11u1+a12u2+c1, a21u1+a22u2+c2, a31u1+a32u2+c3) ∈ IR3

is the parametric equation of a plane in IR3 containing a slice of the scatterer; such a

plane can be found by using the (rather weak) a priori information on the scatterer

suggesting where the scatterer is in the imaging volume.
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(ii) Apply an active contour technique to J(β) as in [2], i.e. find a plane curve of

parametric equation γ : [0, 1] → IR2 minimizing the energy functional

E(γ) :=
∫ 1

0

[
1

2
(w1(s)‖γ′(s)‖IR2 + w2(s)‖γ′′(s)‖IR2) + Eext(γ(s))

]
ds, (5.3)

where

Eext := −‖∇J(β)‖2
IR2 . (5.4)

(iii) Since active contours generate profiles that are close to level curves, the value of

the indicator function on one of these profiles is almost constant. Therefore we

choose

C :=
∫ 1

0
J {Ψ [ξ(γ?(t))]} dt (5.5)

with γ? = argmin γE(γ), i.e. the mean value of J (Ψ) evaluated over the points of

ξ(γ?).

The computation of the active contour in step (ii) is accomplished as in [2, 5].

The external force in (5.4) can be determined by computing ∇J(β) numerically or

analytically: in the former approach, starting from the knowledge of J(β) on a prefixed

grid of points, the gradient ∇J(β) is computed once for all on the same grid by means

of finite differences and used (with interpolation) to deform the contours obtained at

each iteration, while in the latter the knowledge of the analytical form of the indicator

function J (Ψ) allows computing the numerical value of ∇J(β) time by time on a finite

number of points exactly belonging to the contours obtained at each iteration. For the

reconstructions in the present paper we tested both procedures, but since the differences

in the visualization quality are negligible, we shall illustrate only the results obtained

when ∇J(β) is computed by means of finite differences: indeed, the latter procedure

turns out to be faster, owing to the analytical form of ∇J(β), which is now more

complicated than in the genuine 2D case discussed in [2].

Remark 5.1. The previous three-step algorithm can be in principle implemented even

for traditional linear sampling: however, in this case the determination of C through

(5.5) would require a notably greater computational effort. Indeed, in general, the 3D

grid Z of sampling points ~z on which the indicator function J (Ψ) is computed has

nothing to do with the 2D grid G used to implement the active contour technique on a

plane section of the scatterer: as a consequence, J (Ψ) should be computed also on G,

then the final contour resulting from the edge detection technique should be either
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deformed by interpolation and discretized on a proper number of points belonging

to G itself, or even discretized in an ad-hoc set of points, on which J (Ψ) should be

computed separately. If we now remember that in the traditional implementation of

the linear sampling method the regularization procedure needs to be repeated for each

sampling pair (~z, q̂), we can easily understand that this approach is rather heavy from

a computational viewpoint.

We now present and discuss three numerical experiments: in each one of them, the

discretization described in Section 3 is adopted by using the same uniform 9×18 angular

mesh on the unit sphere for both the observation and the incidence directions: more

precisely, we choose the observation angles θx̂
i =

π

Tx̂

(
i +

1

2

)
for all i = 0, . . . , Tx̂ − 1

with Tx̂ = 9 and ϕx̂
j =

2π

Fx̂

j for all j = 0, . . . , Fx̂ − 1 with Fx̂ = 18, and the incidence

angles θd̂
i =

π

Td̂

(
i +

1

2

)
for all i = 0, . . . , Td̂ − 1 with Td̂ = 9 and ϕd̂

j =
2π

Fd̂

j for all

j = 0, . . . , Fd̂ − 1 with Fd̂ = 18. The far-field patterns forming the matrix E∞ defined

in (3.25) are computed by using a code based on the method of moments; each entry of

E∞ is then affected by 7% Gaussian noise. The scatterers are all isotropic and located

in vacuum: this means that the index of refraction is given by

N(~x) = n(~x)I, (5.6)

n(~x) =
1

ε0

[
εr(~x) + i

σ(~x)

ω

]
, (5.7)

where I is the 3×3 identity matrix, ε0 is the dielectric constant in vacuum, εr(~x) and σ(~x)

are the relative permittivity and the conductivity of the scatterer at the point ~x, and

finally ω = 2πν is the angular frequency. All no-sampling visualizations are realized by

choosing J(t) = t−1 ∀t ∈ IR+ ∪{0} and taking as domain of investigation a cube of side

3 m, i.e. T = [−1.5, 1.5]3. In all the numerical tests, the forward scattering problem has

been solved by using a stabilized biconjugated-gradient fast Fourier transform (BCGS-

FFT) method of moments code [18]. The computation domain has been discretized into

cubical subdomains of side about λ/20, being λ the wavelength of the incident field in

vacuum.

The first numerical example we consider is the reconstruction of the “U-shaped”

scatterer in Figure 1(a): this object is characterized by constant εr = 1.8 and σ = 0.02

S·m−1. The frequency used to perform this experiment is ν = 300 MHz, corresponding

to a wavelength λ = 1.0 m in vacuum. In order to determine the threshold value C in

equation (5.1), we follow the previously described scheme. More precisely, if we refer
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IR3 to the usual Cartesian coordinate system (x1, x2, x3), as shown in Figure 1(a), we

restrict the indicator function J(Ψ) to the plane of Cartesian equation x2 = 0; an axial

view of the 2D map visualizing this restriction is represented in Figure 1(b). Then,

the active contour technique is applied to the previous visualization map starting from

a suitable initial guess (the white circle in Figure 1(b)), and the converging profile

(also shown in Figure 1(b) as a black line) is used as the argument of the function

J {Ψ[ξ(·)]} in equation (5.5). The resulting estimate of C is inserted into equation

(5.1) and the corresponding reconstruction of the scatterer, represented in Figure 1(c),

is obtained after 90.1 s of computation time with a 1.6 GHz CPU. In Figure 1(d)

we show the reconstruction provided by the traditional implementation of the linear

sampling method (as explained in [8]) after 1590.1 s of computation time: in this case

we have uniformly discretized the investigation domain T with a sampling grid Z of

30 × 30 × 30 points and combined the three indicator functions corresponding to the

three independent polarizations ê1 = (1, 0, 0), ê2 = (0, 1, 0), ê3 = (0, 0, 1); different

cut-off values C have been used until the “best visual reconstruction”, shown in Figure

1(d), has been obtained. The only difference with respect to [8] is that here, in order

to make a consistent comparison with our no-sampling indicator function J (Ψ) = 1/Ψ,

we choose

Θ(~z) :=


1

3

3∑

j=1

∥∥∥G~z,êj ; α∗(~z,êj)

∥∥∥
2

Ld̂



−1

∀~z ∈ Z (5.8)

as sampled indicator function, instead of

Θ(~z) :=
1

3

3∑

j=1

∥∥∥G~z,êj ; α∗(~z,êj)

∥∥∥
−1

Ld̂

∀~z ∈ Z, (5.9)

where
∥∥∥G~z,êj ; α∗(~z,êj)

∥∥∥
2

Ld̂

is given by (3.33) for each j ∈ {1, 2, 3}.
The following three considerations must be accounted for:

• all the input parameters in the active contour algorithm are optimally fixed by

choosing them in the ranges that, according to the theory, assure the convergence

of the iteration (see [5]);

• the reconstruction in Figure 1(c) provided by the no-sampling formulation coupled

with deformable models is less accurate than the reconstruction in Figure 1(d)

provided by linear sampling coupled with a heuristic choice of the threshold value

C based on a visual comparison with the true scatterer (supposed known). However,

as many numerical tests proved, this difference in accuracy is not due to no-sampling

but to a non-optimal performance of the edge detection technique employed: indeed,

applying heuristic thresholding to no-sampling would lead to reconstructions more

or less identical to those provided by traditional linear sampling;

• in the overall computational time of the no-sampling implementation, most of the
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time (around 80 s) is spent for the edge detection procedure in Figure 1(b) and

for the visualization process, while the determination of the unique regularization

parameter only takes around 2 s. On the contrary, in the sampling formulation

most of the time is devoted to the construction of the indicator function.

The second test is concerned with the non-connected scatterer in Figure 2(a),

characterized by constant εr = 2.0 and σ = 0.0 S m−1 for both the U-forms and

the sphere in between. The frequency chosen for this experiment is ν = 286 MHz,

corresponding to a wavelength λ = 1.05 m in vacuum. The scatterer is firstly cut by the

plane in IR3 of Cartesian equation x2 = 0.9 and the usual deformable model is applied

to the corresponding visualization shown in Figure 2(b) together with the initial guess

(white ellipse) and the reconstructed profile (black contour). The cut-off value C is

then computed by means of equation (5.5) and the resulting surface (5.1) is plotted in

Figure 2(c). In Figure 2(d) we show the result obtained by using the traditional linear

sampling with the same choices for the parameters and the indicator function and the

same heuristic procedure for estimating C as in the previous numerical experiment.

The computational times for both reconstructions are around the same ones as for the

corresponding reconstructions in Figure 1.

Finally, the third numerical experiment is performed by using the non-connected

scatterer in Figure 3(a) at a frequency ν = 300 MHz: the parallelepiped on the left

is centred in (−0.75, 0, 0) and characterized by constant εr = 2.1 and σ = 0.0 S

m−1, while that on the right is centred in (0.75, 0, 0) and characterized by constant

εr = 1.5 and σ = 0.0 S m−1. In this case we only adopt the no-sampling approach, but

with three different strategies. In the first strategy, the scatterer is cut by the plane

x1 = −0.75 and the threshold C is determined as usual to obtain the reconstruction

in Figure 3(b). In the second strategy, we use the plane x1 = 0.75, which provides

the reconstruction in Figure 3(c). Finally, if we split the domain of investigation T

into T1 := [−1.5, 0]× [−1.5, 1.5]× [−1.5, 1.5] and T2 := [0, 1.5]× [−1.5, 1.5]× [−1.5, 1.5],

intersect T1 with x1 = −0.75, T2 with x1 = 0.75 and use the two corresponding threshold

values to reconstruct the two objects with different εr, we obtain the reconstruction

shown in Figure 3(d): this last procedure allows better preserving the original size of

the two objects in the non-connected scatterer.

As a final comment, we observe that it is certainly possible to consider scatterers

which are much more complex than those chosen here to illustrate the advantages of the

no-sampling formulation of the linear sampling method: for example, we could consider

anisotropic, inhomogeneous and non-connected scatterers, with connected components

that are very close to each other (with respect to the wavelength λ) and, consequently,

hard to separate in the reconstruction. In these very general cases, the most suitable

approach for post-processing the indicator function is probably an iterative procedure

based on level sets (see [16] and references therein): indeed, level sets can easily detect
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non-connected objects starting from a connected initial guess, since their formulation

(unlike the active contour technique used in this paper) enables an automatic splitting

of the profiles obtained during the iterations; moreover, the final visualization provided

by such a procedure does not need to be a level surface of the indicator function, thus

allowing a more reliable reconstruction of strongly inhomogeneous and non-connected

scatterers. Implementing a level-set-based technique for a post-processing of the no-

sampling linear sampling is beyond the purposes of this paper; however, we point out

that, in principle, the analytical knowledge of the indicator function can be very useful

also for such a technique.

6. Conclusions

In this paper we have introduced a no-sampling version of the linear sampling

method for 3D electromagnetic inverse scattering problems. In this approach the

availability of an analytically known indicator function allows the fast and automatic

visualization of the scatterers from the knowledge of their far-field patterns. Possible

open problems are concerned with the assessment of the spatial resolution achievable

with the method and its effectiveness in the case of limited aperture data.

Appendix

Let M and N be two positive integers; let the M ×M matrix ∆SM and the N × N

matrix ∆SN be diagonal and positive-definite; let the vector spaces ICM and ICN be

equipped with the scalar products (·, ·)∆SM
and (·, ·)∆SN

described by ∆SM and ∆SN

respectively, i.e.:

(x1,x2)∆SM
:= xT

1 ∆SMx2, (y1,y2)∆SN
:= yT

1 ∆SNy2, (A1)

where x1,x2 ∈ ICM and y1,y2 ∈ ICN are generic column vectors. Let the linear operator

T :
(
ICM , (·, ·)∆SM

)
→

(
ICN , (·, ·)∆SN

)
be represented by the N × M matrix T. We

denote with (Σ,U,V) the singular system of T , such that

TU = VΣ, T∗V = UΣ (A2)

with the othonormality properties

UT∆SMU = Ir, VT∆SNV = Ir, (A3)

where Ir is the r×r identity matrix, r is the rank of T and T∗ is the matrix representing

the adjoint operator T ∗. Then the following theorem holds.
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Figure 1. Reconstruction effectiveness of 3D no-sampling linear sampling: (a) the
scattering object; (b) application of active contours to the restriction of the indicator
function to x2 = 0 (white line: initialization; black line: final profile); (c) reconstruction
provided by no-sampling linear sampling in around 90 s of CPU time (the threshold
value for the surface equation is computed by using (5.5)); (d) reconstruction provided
by traditional linear sampling in around 1600 s of CPU time (the threshold value for
the surface equation is obtained by means of a heuristic trial-and-error procedure).

Theorem A.1. Let
(
Σ̃, Ũ, Ṽ

)
be the singular system of the matrix

T̃ := (∆SN)
1
2 T (∆SM)−

1
2 . (A4)

Then the triple (Σ,U,V) defined by

Σ := Σ̃, U := (∆SM)−
1
2 Ũ, V := (∆SN)−

1
2 Ṽ (A5)

is the singular system of the operator T .

Proof. The fact that
(
Σ̃, Ũ, Ṽ

)
is the singular system of the matrix T̃ defined in (A4)

means that

T̃Ũ = ṼΣ̃, T̃
>

Ṽ = ŨΣ̃ (A6)



22

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b)

(c) (d)

Figure 2. Reconstruction effectiveness of 3D no-sampling linear sampling: (a)
the scattering object; (b) application of active contours to the restriction of the
indicator function to x2 = 0.9 (white line: initialization; black line: final profile);
(c) reconstruction provided by no-sampling linear sampling in around 90 s of CPU
time (the threshold value for the surface equation is computed by using (5.5)); (d)
reconstruction provided by traditional linear sampling in around 1600 s of CPU time
(the threshold value for the surface equation is obtained by means of a heuristic trial-
and-error procedure).

with the othonormality properties:

ŨT Ũ = Ir, ṼT Ṽ = Ir. (A7)

Now, by virtue of (A4), (A5), (A6), we have

TU−VΣ = T (∆SM)−
1
2 Ũ− (∆SN)−

1
2 ṼΣ̃ =

= (∆SN)−
1
2

[
(∆SN)

1
2 T (∆SM)−

1
2 Ũ− ṼΣ̃

]
=

= (∆SN)−
1
2

[
T̃Ũ− ṼΣ̃

]
= 0, (A8)
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(a) (b)

(c) (d)

Figure 3. Reconstruction of two objects with different permittivity by means of no-
sampling linear sampling: (a) the two scattering objects; (b) reconstruction obtained
by choosing a unique threshold value C = C1 computed as in (5.5) by cutting the non-
connected scatterer with the plane x1 = −0.75; (c) reconstruction obtained by choosing
a unique threshold value C = C2 computed as in (5.5) by cutting the non-connected
scatterer with the plane x1 = 0.75; (d) reconstruction obtained by choosing the two
different threshold values C1 and C2 for visualizing the two objects. The visualization
time for each reconstruction is of around 90 s of CPU time.

so that the first of relations (A2) is satisfied. Recalling now (A1), we have:

(T∗y,x)∆SM
= (T∗y)T ∆SMx = yT (T∗)T ∆SMx (A9)

and

(y,Tx)∆SN
= yT∆SN(Tx) = yT∆SNTx. (A10)

By comparing (A9) with (A10), we find:

(T∗)T ∆SM = ∆SNT ⇒ (T∗)T = ∆SNT∆S−1
M , (A11)
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and then

T∗ = ∆S−1
M T

T
∆SN . (A12)

A computation analogous to (A8) now shows that T∗V−UΣ = 0, i.e. also the second of

relations (A2) is satisfied. Finally, the orthonormality properties (A3) are immediately

proved by taking into account the analogous properties (A7) and definitions (A5). 2

References

[1] Aramini R, Brignone M and Piana M 2006 The linear sampling method without sampling Inverse
Problems 22 2237-2254

[2] Aramini R, Brignone M, Coyle J and Piana M 2008 Post-processing of the linear sampling method
by means of deformable models SIAM J. Sci. Comput. (in press)

[3] Bertero M and Boccacci P 1998 Introduction to inverse problems in imaging (Bristol: Institute of
Physics Publishing)

[4] Cakoni F and Colton D 2006 Qualitative methods in inverse scattering theory (Berlin: Springer)
[5] Cohen L D 1991 On active contour models and balloons CVGIP Image understanding 53 211-218
[6] Cohen L D and Cohen I 1993 Finite-Element Methods for Active Contour Models and Balloons

for 2-D and 3-D Images IEEE Trans. Pattern Anal. Machine Intell. 15 1131-1147
[7] Colton D, Haddar H and Monk P 2002 The Linear Sampling Method for Solving the

Electromagnetic Inverse Scattering Problem SIAM J. Sci. Comput. 24 719-731
[8] Colton D, Haddar H and Piana M 2003 The linear sampling method in inverse electromagnetic

scattering theory Inverse Problems 19 S105-S137
[9] Colton D and Kirsch A 1996 A simple method for solving inverse scattering problems in the

resonance region Inverse Problems 12 383-393
[10] Colton D and Kress R 1998 Inverse Acoustic and Electromagnetic Scattering Theory (Berlin:

Springer)
[11] Colton D and Monk P 1998 A linear sampling method for the detection of leukemia using

microwaves SIAM J. Appl. Math. 58 926-941
[12] Colton D and Monk P 1998 A linear sampling method for the detection of leukemia using

microwaves II SIAM J. Appl. Math. 60 241-255
[13] Colton D, Monk P and Giebermann K 2000 The regularized sampling method SIAM J. Sci.

Comput. 21 2316-2330
[14] Colton D and Piana M 1998 The simple method for solving the electromagnetic inverse scattering

problem: the case of TE polarized waves Inverse Problems 14 597-614
[15] Colton D, Piana M and Potthast R 1997 A simple method using Morozov’s discrepancy principle

for solving inverse scattering problems Inverse Problems 13 1477-1493
[16] Sethian J A 1999 Level Sets Methods and Fast Marching Methods (Cambridge: Cambridge

University Press)
[17] Tikhonov A N, Goncharsky A V, Stepanov V V and Yagola A G 1995 Numerical Methods for the

Solution of Ill-Posed Problems (Dordrecht: Kluwer)
[18] Zhong Q Z, Qing H L, Xiao C, Ward E, Ybarra G and Joines W T 2003 Microwave Breast Imaging:

3-D Forward Scattering Simulation IEEE Trans. Biomed. Eng. 50 1180-1189


